

# **AOC** Incorporated

*Flexible Warships in Foreign Navies: Applications for Future U.S. Navy Surface Combatants* 

ASNE DAY 2015 March 5, 2015 Authors: Nicholas Abbott, Tony Jang, Darren Leap, Alexander B. Schaps







### Agenda



- Introduction to "Flexibility"
- Foreign Navy Flexible Warships:
  - Germany, Denmark, United Kingdom, The Netherlands, Italy and France
- Summary of Flexibility Enablers on Foreign Warships
- Positive Impacts of Flexibility Enablers on Foreign Warships
- Flexibility Enablers Applied Over the Life Cycle
- US Flexible Warships:
  - History,
  - Applications for the US Navy Future Flexible Warships
- Observations & Analysis
- Recommendations

### **Flexibility Definition**



### • Flexibility is defined as:

"The ability of a ship to adapt to universal or alternate solutions with the benefit of increased capability, reduced cost or both."

### **Key Attributes of Flexibility** NAVSEA Flexible Ships Roadmap 2014



| Attribute              | Description                                                                                                                                                                                    |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adaptability           | Ships built with the ability to accept systems/equipment that can be<br>removed and replaced according to specified time/cost objectives to<br>adapt a ship's capabilities to a given mission. |
| Modularity             | Ships built with standardized interfaces and modular components that reduce the complexity of producing/integrating systems and modernizing capabilities.                                      |
| Scalability            | The ability of hardware/software combinations to be increased/decreased<br>to match capability requirements of different sized ship platforms without<br>sacrificing performance.              |
| Payload<br>Commonality | Payload systems developed independently of ship platforms using standardized design specifications allowing the same systems to be applied across multiple platforms.                          |

### Flexibility Enablers (1 of 2)



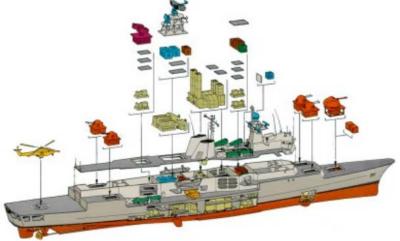
- <u>Production Modularity</u> The use of production processes that use standardized design elements as the building blocks to produce customized ships. This includes the use of modularized equipment to facilitate streamlining of outfitting and furnishing.
- <u>SWAP-C</u> Growth Margins for Size, Weight, Power and Cooling.
- <u>Flexible Design Provisions</u> The incorporation of considerations that support technology insertion or mission reconfiguration at reduced cost. This includes design benefits that aren't included in other categories (e.g. access routes).
- <u>Modular Payloads/Stations</u> *Modular Stations ship spaces that are designed with standard module interfaces. Modular Payloads are the packaging of equipment or systems that can easily be integrated into a ship space or module station.*

### Flexibility Enablers (2 of 2)

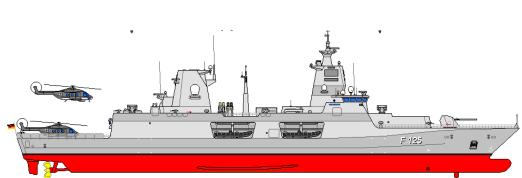


- <u>Flexible Mission Spaces (Mission Bay)</u> Ship spaces that support reconfiguration for multiple missions using multiple module stations.
- <u>Open Infrastructure</u> *The built-in ability of a ship platform to easily accommodate change. This includes the use of a common computing, data, communications infrastructure.*
- <u>Open Standards</u> The use of requirements that are not customized for a ship or a payload module.
- <u>Commonality</u> The use of items that are shared with other subsystems or naval platforms.

### Flexibility Enablers to Flexible **Ship Roadmap**




| Flexibility Enablers                                    | Key Attributes of Flexible Ships |            |             |                        |  |  |
|---------------------------------------------------------|----------------------------------|------------|-------------|------------------------|--|--|
|                                                         | Adaptability                     | Modularity | Scalability | Payload<br>Commonality |  |  |
| Production Modularity                                   | Х*                               | Х*         | Х           |                        |  |  |
| Flexible Design Provisions                              | Х                                |            |             |                        |  |  |
| Modular Payloads / Stations                             | Х                                | Х          |             | Х                      |  |  |
| Flexible Mission Spaces<br>(Mission Bay)                | Х                                | Х          |             | Х                      |  |  |
| Open Infrastructure                                     | Х                                |            | Х           |                        |  |  |
| *Production modularity that uses modularized equipment. |                                  |            |             |                        |  |  |





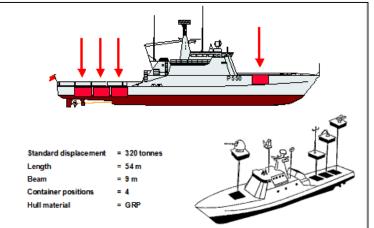

| Code | Function Unit Type                        |
|------|-------------------------------------------|
|      | Dual-Purpose Gun Function Units           |
|      | Surface-to-Air Missile Function Units     |
|      | Surface-to-Surface Missile Function Units |
|      | Anti-Submarine Warfare Function Units     |
|      | Fire Control Function Units               |
|      | Communication/Navigation Function Units   |



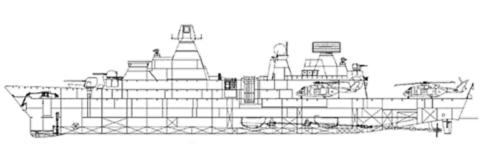




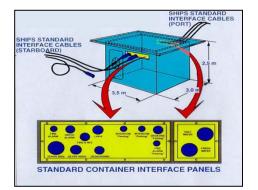
F125 Class




#### **MKS 180**








StanFlex 300 Ship Source: RDN



#### Large Displacement Classes



#### StanFlex Container Source: RDN

### Danish Frigate F363 Modularity Features





StanFlex Modular VLS Station & Payload



Straight Run Service Piping and Cabling

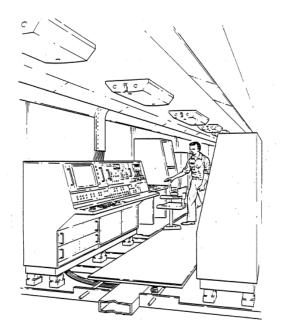


**Optional Bolt-on Lightweight Armor** 



Midship Container Storage Area




Modular Gun on ISO Container Mounts



Extra-Large Cabling Tray and Penetrations

Photos taken by AOC on F363 tour on 2014-11-12





Cellularity Concept circa. 1985



#### Type 26 GCS



Type 26 GCS Mission Bay Concept.

Image Source: Navy Matters.

### **The Netherlands**



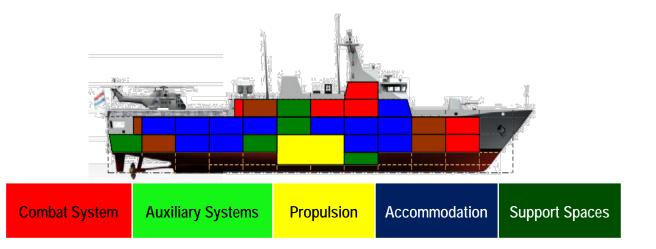
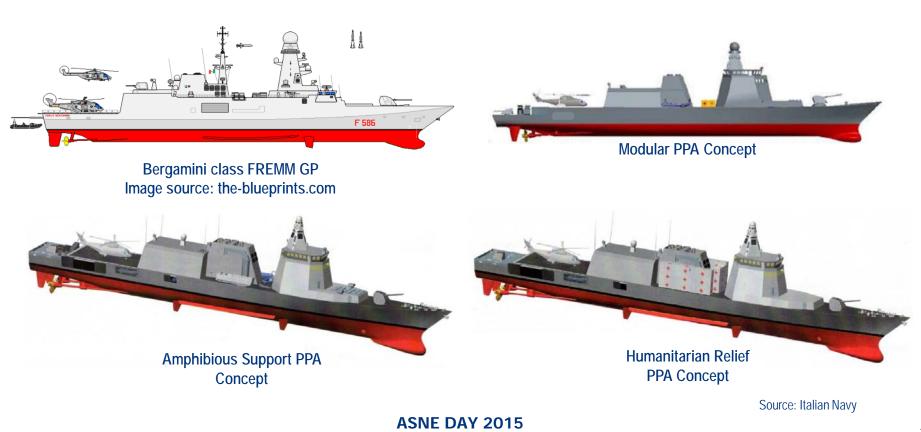


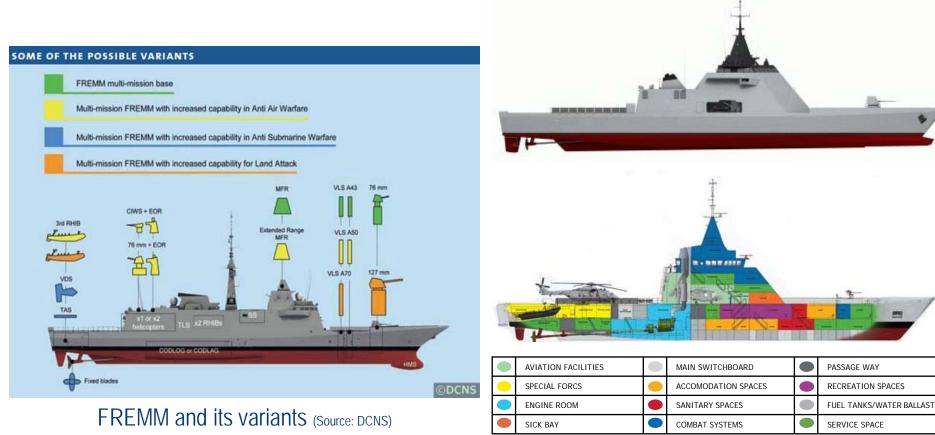

Image Source: Damen Schelde Naval Shipbuilding




#### CROSSOVER



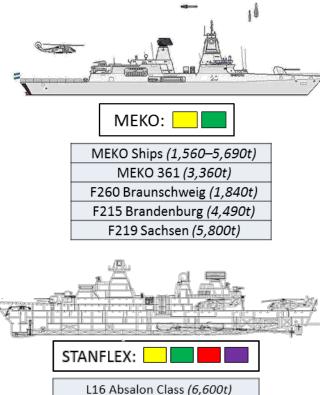
### Italian FREMM and PPA Modular Frigate Concepts



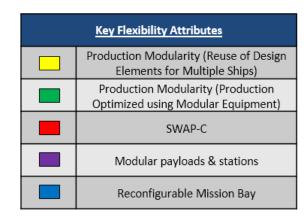

- Surface Combatants
  - Building new 7000-ton Bergamini-class FREMM frigates
  - Developing new units (e.g. PPA multi-role patrol vessel)

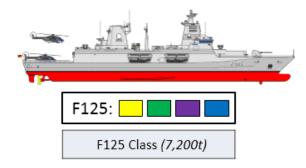


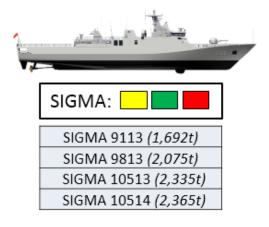
### **French Flexible Warships**





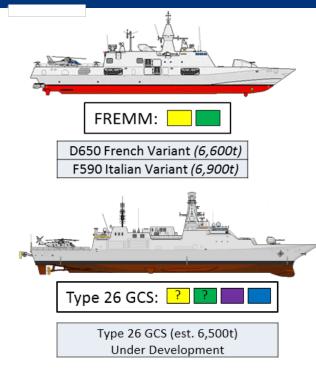


#### Gowind Family (Source: DCNS)


### Flexibility Enablers Summary per Ship Class (1 of 2)



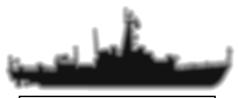


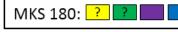

L16 Absalon Class (6,600t) F361 Iver Huitfeldt (6,645t) P570 Knud Rasmussen (1,720t)



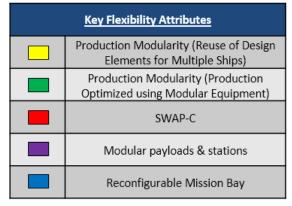






### Flexibility Enablers Summary per Ship Class (2 of 2)






PPA *(est. 4,500t)* Under Development





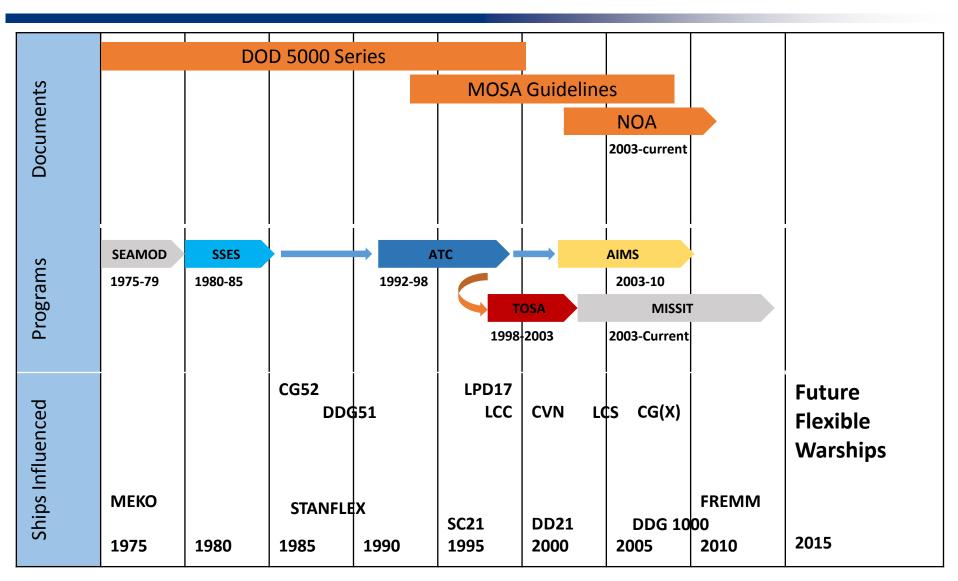

MKS180 Class (5,000t max) Under Development







# Flexibility Enablers over the Life Cycle




| Flexible Enablers      | Production<br>Modularity                     | •                                               | Modular Payloads<br>& Stations                    | Flexible Mission<br>Space (Mission Bay) | Open<br>Infrastructure      | Commonality                                    | Open Standards                       |
|------------------------|----------------------------------------------|-------------------------------------------------|---------------------------------------------------|-----------------------------------------|-----------------------------|------------------------------------------------|--------------------------------------|
| Due duette u           | wodularity                                   | Margins)                                        | & Stations                                        | Space (IVIISSION Bay)                   | Infrastructure              |                                                |                                      |
| Production<br>Schedule | Reduced Build<br>Schedule &<br>Schedule Risk | Reduced<br>Integration Risks                    | Reduced Build<br>Schedule &<br>Schedule Risk      | NC                                      | Reduced Design<br>Time      | Reduced Design<br>Time                         | Reduced<br>Procurement Lead<br>Times |
| Cost                   | Reduced Labor                                | Increased Material<br>Costs                     | Reduced Labor                                     | NC                                      | Reduced Unit<br>Costs       | Reduced Unit<br>Costs                          | Reduced Unit<br>Costs                |
| Pre & Post Deployment  |                                              |                                                 |                                                   |                                         |                             |                                                |                                      |
| Maint & Training       | NC                                           | Reduced<br>Maintenance Time                     | Reduced Training<br>& Reduced<br>Maintenance Time | NC                                      | Reduced Training            | Reduced Training                               | Reduced Training                     |
| Deployment             |                                              |                                                 |                                                   |                                         |                             |                                                |                                      |
| Availability           | NC                                           | Increased Ao -<br>(Reduced<br>Maintenance Time) | Increased Ao -<br>(Reduced<br>Maintenance Time)   | NC                                      | NC                          | Increased Ao -<br>Common Spares/<br>Redundancy | NC                                   |
| Overhaul & Repair      | Overhaul & Repair                            |                                                 |                                                   |                                         |                             |                                                |                                      |
| Maint & Training       | *Reduced<br>Maintenace Time                  | Reduced<br>Maintenance Time                     | Reduced Training<br>& Reduced<br>Maintenance Time | NC                                      | Reduced Training            | Reduced Training                               | Reduced Training                     |
| Cost                   | *Reduced Labor                               | Reduced Labor                                   | Reduced Labor                                     | More Flexibility per<br>Ship            | Reduced Labor               | Reduced Unit<br>Costs (Quantity<br>Buy)        | Reduced Unit<br>Costs (Spares)       |
| Technology Upgrades    |                                              |                                                 |                                                   |                                         |                             |                                                |                                      |
| Maint & Training       | *Reduced<br>Maintenace Time                  | Reduced<br>Maintenance Time                     | Reduced Training<br>& Reduced<br>Maintenance Time | NC                                      | Reduced Training            | Reduced Training                               | Reduced Training                     |
| Cost                   | *Reduced Labor                               | Reduced<br>Integration Time                     | Reduced<br>Integraiton Time                       | Reduced Integration<br>Time             | Reduced<br>Integration Time | Reduced Unit<br>Costs                          | Reduced Unit<br>Costs                |
| Integration Risks      | *Reduced Risks                               | Reduced Risks                                   | Reduced Risks                                     | Reduced Risks                           | Reduced Risks               | NC                                             | NC                                   |
| Disposal               |                                              |                                                 |                                                   |                                         |                             |                                                |                                      |
| Cost                   | *Reuse of<br>Modularized<br>Equipment        | NC                                              | Reuse of Payloads<br>/ Reduced Labor              | NC                                      | NC                          | Resue of Common<br>Hardware                    | NC                                   |



AOC

Incorporated





What can we learn from foreign flexible warships?

- Foreign Navies made decisions in favor of building flexible warships for <u>near term savings</u>. These include:
- Improved construction process
- Mission Reconfiguration Capability in a Single Hull
- Use of a common hull (platform) for multi-national use

Flexibility benefits are proven and are driving decisions for wider adoption by these navies.

### Recommendations for Future U.S. Warship Development



Top Priorities for Implementation of Flexibility:

- 1. Use modular payloads
- 2. Develop a process based cost model
- 3. Help equipment suppliers learn "what's in it for them"
- 4. Implement common hulls

The concept of a Flexible Warship can help the Navy achieve both cost and capability goals for its ships.



### **Questions?**

## **Thank You**